ON THE SOLUTION OF DYNAMIC PROBLEMS IN THE PLANE THEORY OF ELASTICITY FOR ANISOTROPIC MEDIA

(K RESHENIIU DINAMICHESKIKH ZADACH PLOSKOII TEORII UPRUGOSTI DLIA ANIZOTROPNOGO TELA)

```
PMM Vol.25, No.5, 1961, pp. 885-896
    V.A. SVEKLO
(Kaliningrad)
(Received May 5, 1961)
```

1. The equations of motion in terms of potentials. The equations of motion for the displacements in a plane anisotropic medium, in the absence of body forces, are [1]

$$
\begin{equation*}
a \frac{\partial^{2} u}{\partial x^{2}}+d \frac{\partial^{2} u}{\partial y^{2}}+c \frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} u}{\partial t^{2}} \quad c \frac{\partial^{2} u}{\partial x \partial y}+d \frac{\partial^{2} v}{\partial x^{2}}+a \frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial^{2} v}{\partial t^{2}} \tag{1.1}
\end{equation*}
$$

where u, v are the components of the displacement vector, a, c, d are elastic constants, the density of the medium having been taken equal to unity. We shall restrict attention to the case of three elastic constants, since the more general case can be treated similarly. Introducing the potentials of rotation free and equivoluminal displacements by means of the equations

$$
\begin{equation*}
u=\frac{\partial \varphi}{\partial x}+\frac{\partial \psi}{\partial y}, \quad v=\frac{\partial \varphi}{\partial y}-\frac{\partial \psi}{\partial x} \tag{1.2}
\end{equation*}
$$

we obtain the equations of motion in terms of potentials

$$
\begin{align*}
& \frac{\partial}{\partial x}\left[a \frac{\partial^{2} \varphi}{\partial x^{2}}+(d+c) \frac{\partial^{2} \varphi}{\partial y^{2}}-\frac{\partial^{2} \varphi}{\partial t^{2}}\right]+\frac{\partial}{\partial y}\left[(a-c) \frac{\partial^{2} \psi}{\partial x^{2}}+d \frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial t^{2}}\right]=0 \\
& \frac{\partial}{\partial y}\left[(d+c) \frac{\partial^{2} \varphi}{\partial x^{2}}+a \frac{\partial^{2} \varphi}{\partial y^{2}}-\frac{\partial^{2} \varphi}{\partial t^{2}}\right]-\frac{\partial}{\partial x}\left[d \frac{\partial^{2} \psi}{\partial x^{2}}+(a-c) \frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial t^{2}}\right]=0 \tag{1.3}
\end{align*}
$$

A generalization of the method of complex solutions to the case of systems of homogeneous differential equations of the second order has already been given in [1]. These results apply immediately to the system (1.3) and furnish its solutions of the particular form

$$
\begin{equation*}
\varphi=\Phi(\Omega), \quad \psi=\Psi(\Omega) \tag{1.4}
\end{equation*}
$$

where Ω is defined by

$$
\begin{equation*}
\delta \equiv l(\Omega) t+m(\Omega) x+n(\Omega) y+k(\Omega)=0 \tag{1.5}
\end{equation*}
$$

The following formulas are valid for the derivatives of the function ϕ (analogous formulas hold for the function ψ):

$$
\begin{gather*}
\frac{\partial^{3} \varphi}{\partial x^{\alpha^{\prime}} \partial y^{\beta^{\prime}} \partial t^{\gamma^{\prime}}}=-\frac{1}{\delta^{\prime}} \frac{\partial}{\partial \Omega}\left[\frac{1}{\delta^{\prime}} \frac{\partial}{\partial \Omega}\left(\frac{m^{\alpha^{\prime}} n^{\beta^{\prime}} l^{\gamma^{\prime}}}{\delta^{\prime}} \Phi^{\prime}\right)\right] \quad\left(\alpha^{\prime}+\beta^{\prime}+\gamma^{\prime}=3\right) \tag{1.6}\\
\delta^{\prime}=l^{\prime}(\Omega) t+m^{\prime}(\Omega) x+n^{\prime}(\Omega) y+k^{\prime}(\Omega) \neq 0 \\
l^{\prime}(\Omega)=\frac{d l}{d \Omega}, \ldots, \Phi^{\prime}(\Omega)=\frac{d \Phi}{d \Omega}
\end{gather*}
$$

It is readily seen that the system (1.3) is satisfied provided that l, m, n are such that

$$
\begin{gather*}
m\left[a m^{2}+(d+c) n^{2}-l^{2}\right] \Phi^{\prime}+n\left[(a-c) m^{2}+d n^{2}-l^{2}\right] \Psi^{\prime}=0 \\
n\left[(d+c) m^{2}+a n^{2}-l^{2}\right] \Phi^{\prime}-m\left[d m^{2}+(a-c) n^{2}-l^{2}\right] \Psi^{\prime}=0 \tag{1.7}
\end{gather*}
$$

which implies that the following relation must hold:

$$
\left|\begin{array}{lr}
m\left[a m^{2}+(d+c) n^{2}-l^{2}\right] & n\left[(a-c) m^{2}+d n^{2}-l^{2}\right] \tag{1.8}\\
n\left[(d+c) m^{2}+a n^{2}-l^{2}\right] & -m\left[d m^{2}+(a-c) n^{2}-l^{2}\right]
\end{array}\right|=0
$$

and a similar relation between Φ^{\prime} and Ψ^{\prime}. Putting $l \equiv 1, m=-: \theta, n=\lambda$, we may rewrite (1.5) in the form

$$
\begin{equation*}
\delta_{j} \equiv t-\theta_{j} x+\lambda_{j}\left(\theta_{j}\right) y+k_{j}\left(\theta_{j}\right)=0 \tag{1.9}
\end{equation*}
$$

where λ_{j} are the roots of Equation (1.8), which may be written

$$
\begin{equation*}
\lambda^{4}-\frac{a+d-L \theta^{2}}{a d} \lambda^{2}+\left(\frac{1}{a}-\theta^{2}\right)\left(\frac{1}{d}-\theta^{2}\right)=0 \quad\left(L=a^{2}+d^{2}-c^{2}\right) \tag{1.10}
\end{equation*}
$$

Obviously the λ_{i} are the branches of an algebraic function λ which is single-valued on a Riemann surface which consists of two planes θ_{1} and θ_{2}, cut, respectively, along the intervals $(-1 / \sqrt{ } a, 1 / \sqrt{ } a)$, $(-1 / \sqrt{ } d, 1 / \sqrt{ } d)$. The planes are attached to each other along a cut that joins the branch points $\theta_{k}{ }^{\circ}$, which are the roots of the equation

$$
\begin{equation*}
\left(\frac{\left.a+d-L \theta^{2}\right)}{2 a d}\right)^{2}-\left(\frac{1}{a}-\theta^{2}\right)\left(\frac{1}{d}-\theta^{2}\right)=0 \tag{1.11}
\end{equation*}
$$

These roots are not real but complex conjugates, provided that $c<$ a-: d. This inequality holds for all anisotropic bodies which are considered in [2]; as may be seen from the following table [2]; where unit stress is taken to be $10^{6} \mathrm{~g} / \mathrm{cm}^{2}$.

Medium	a	d	c	$a-d$
Pyrites (cubic)	3680	1075	592	2505
Fluor Spar	1670	345	797	1325
Rock-salt	477	129	261	348
Potassium chloride	375	65.5	263.5	309.5

In order to construct solutions we shall employ the first of the relations (1.7). By introducing the functions Φ_{j} and Ψ_{j}, corresponding to the the root λ_{j}, we obtain

$$
\begin{equation*}
\Phi_{j}^{\prime}\left(\theta_{j}\right)=\lambda_{j} P_{j}\left(\theta_{j}\right) \omega_{j}\left(\theta_{j}\right), \quad \Psi_{j}^{\prime}\left(\theta_{j}\right)=\theta_{j} Q_{j}\left(\theta_{j}\right) \omega_{j}\left(\theta_{j}\right) \tag{1.12}
\end{equation*}
$$

where ω_{j} is a branch of an arbitrary algebraic function ω which is single-valued on the Riemann surface mentioned above, and

$$
\begin{equation*}
P_{j}\left(\theta_{j}\right)=(a-c) \theta_{j}^{2}+d \lambda_{j}^{2}-1, \quad Q_{j}\left(\theta_{j}\right)=a \theta_{j}^{2}+(d+c) \lambda_{j}^{2}-1 \tag{1.13}
\end{equation*}
$$

The general real-valued solution (of the form (1.4)) of the system (1.3) is given by
$\varphi(x, y, t)=\sum_{j=1}^{2} \operatorname{Re} \int^{\Theta_{j}} \lambda_{j} P_{j}(\xi) \omega_{j}(\xi) d \xi, \quad \psi(x, y, t)=\sum_{j=1}^{2} \operatorname{Re} \int^{\Theta_{j}} \xi Q_{j}(\xi) \omega_{j}(\xi) d \xi$

In order to obtain the homogeneous solutions of zero order, one has to set $k_{j} \equiv 0$ in (1.9); this yields

$$
\begin{equation*}
\delta_{j}=1-\theta_{j} \xi+\lambda_{j}\left(\theta_{j}\right) \eta=0 \quad\left(\xi=\frac{x}{\imath}, \quad \eta=\frac{y}{t}\right) \tag{1.15}
\end{equation*}
$$

which furnishes the correspondence between the above-mentioned Riemann surface and the domain in the $\xi \eta$-plane, where the functions $\theta_{1}(\xi, \eta)$ and $\theta_{2}(\xi, \eta)$ are defined. This is a double-sheeted domain, consisting of two separate domains, corresponding to the planes θ_{1} and θ_{2}, attached along the cut which joins the branch points $\left(\xi_{k}{ }^{\circ}, \eta_{k}{ }^{\circ}\right)$. These two points are the images, in the $\xi \eta$-plane, of the branch points $\theta_{k}{ }^{\circ}$. The boundaries of these domains are obtained as the envelopes of the straight lines (1.15) for real θ_{j} and λ_{j}. Solving Equation (1.10), we obtain

$$
\lambda_{j}=\left[\frac{a+d-L \theta^{2}}{2 a d}+(-1)^{j} \sqrt{\left(\frac{a+d-L \theta^{2}}{2 a d}\right)^{2}-\left(\frac{1}{a}-\theta^{2}\right)\left(\frac{1}{d}-\theta^{2}\right)}\right]^{1 / 2}
$$

where the radical sign inside the square brackets refers to that branch which is positive for real θ, and the "outer" square root refers to the
branch which is positive on the upper banks of the cuts ($-1 / \sqrt{ } a, 1 / \sqrt{ } a)$, $(-1 / \sqrt{ } d, 1 / \sqrt{ } d)$. For $c<a-: d$, outside these cuts on the real axis, λ_{1} and λ_{2} take on only purely imaginary values. Thus the points of the Riemann surface which lie on the mentioned cuts correspond, in the $\xi \eta$ plane, to points of curves on the cone of rays; and the point at infinity corresponds to the origin of coordinates. The two-sheeted domain in the $\xi \eta-\mathrm{pl}$ ane is the simultaneous domain of definition of the functions θ_{1} and θ_{2}. In the xyt-space it determines the interior of a characteristic cone of the system (1.3), with vertex at the point $x=y=t=0$.
2. Lamb's problem. Suppose first that on the boundary of an anisotropic half-space $y \leqslant 0$ there act the distributed tractions:

$$
\begin{equation*}
\sigma_{y}=-N(x, t), \quad \tau_{x y}=-T(x, t) \quad \text { for } y=0 \tag{2.1}
\end{equation*}
$$

which differ from zero on the rectangle $0<t<t_{0},-l_{1}<x<l_{1}$, and suppose that they have a finite impulse; and introduce the new tractions

$$
\begin{equation*}
N_{\varepsilon}(x, t)=\frac{1}{\varepsilon^{2}} N\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right), \quad T_{\varepsilon}(x, t)=\frac{1}{\varepsilon^{2}} T\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \tag{2.2}
\end{equation*}
$$

which differ from zero on the internal $0<t<\epsilon t_{0},-\epsilon l_{1}<x<\epsilon l_{1}$, and let $\phi_{\epsilon}(x, y, t), \psi_{\epsilon}(x, y, t)$ be the corresponding potentials. It is easy to show that in the limit, as $\epsilon \rightarrow 0$, we obtain homogeneous functions of the first order, ϕ and ψ, which carrespond to the action of an instantaneous impulse. Thus in order to solve the problem it is necessary to obtain solutions of the system (1.3), with zero stress components σ_{y} and $r_{x y}$ on the boundary of the domain for $t>0$, that is

$$
\begin{align*}
& \left(\delta_{1}-1\right) \frac{\partial^{2} \varphi}{\partial x^{2}}+\gamma_{1} \frac{\partial^{2} \varphi}{\partial y^{2}}-\left(1+\gamma_{1}-\delta_{1}\right) \frac{\partial^{2} \psi}{\partial x \partial y}=0 \\
& 2 \frac{\partial^{2} \varphi}{\partial x \partial y}+\frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial x^{2}}=0 \quad\left(\delta_{1}=\frac{c}{d}, \gamma_{1}=\frac{a}{d}\right) \tag{2.3}
\end{align*}
$$

The solution will be sought in the form (1.14). The boundary conditions will then be automatically satisfied, provided that the analytic functions and Φ_{j}, Ψ_{j}, analytic in the upper half-plane, fulfill the relations

$$
\begin{gather*}
\sum_{j=1}^{2} \operatorname{Re}\left\{\left[(c-d) \theta^{2}+a \lambda_{j}^{2}\right] \Phi_{j}^{\prime}+(a+d-c) \theta \lambda_{j} \Psi_{j}^{\prime}\right\}=0 \tag{2.4}\\
\sum \operatorname{Re}\left\{-2 \theta \lambda_{j} \Phi_{j}^{\prime}+\left(\lambda_{j}^{2}-\theta^{2}\right) \Psi_{j}^{\prime}\right\}=0
\end{gather*}
$$

Using (1.12), we obtain

$$
\begin{equation*}
\operatorname{Re}\left[\lambda_{1} S_{1} \omega_{1}+\lambda_{2} S_{2} \omega_{2}\right]=0, \quad \operatorname{Re} \theta\left[M_{1} \omega_{1}+M_{2} \omega_{2}\right]=0 \tag{2.5}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\lambda_{1} S_{1} \omega_{1}-\lambda_{2} S_{2} \omega_{2}=i \alpha, \quad \theta\left[M_{1} \omega_{1}+M_{2} \omega_{2}\right]=i \beta \tag{2.6}
\end{equation*}
$$

where

$$
\begin{gather*}
S_{j}=\left[\left(\delta_{1}-1\right) 0^{2}+\gamma_{1} \lambda_{j}^{2}\right] P_{j}+\left(1+\Upsilon_{1}-\delta_{1}\right) Q_{j} \tag{2.7}\\
M_{j}=-2 \lambda_{j}^{2} P_{j}+\left(\lambda_{j}^{2}-\theta^{2}\right) Q_{j}
\end{gather*}
$$

Using the ω_{j}, as determined by (2.6), in Equation (1.12), we obtain

$$
\Phi_{1}^{\prime}+\Phi_{2}^{\prime}=i \sum_{j=1}^{2} \frac{\lambda_{j} P_{j} M_{3-j} \alpha+\lambda_{j} \lambda_{3-j} P_{3-j} s_{j} \beta}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta\left(\theta_{j}\right)}
$$

$$
\begin{equation*}
\Delta\left(0_{j}\right)=\theta_{j} \sum_{k=1}^{2} \frac{\lambda_{k} S_{k} M_{3-k}}{\left(\lambda_{k}-\lambda_{3-k}\right)} \tag{2.3}
\end{equation*}
$$

$\Psi_{1}{ }^{\prime}+\Psi_{2}=i \sum_{j=1}^{2} \frac{\theta_{j} Q_{j} M_{3-j} \alpha+\lambda_{j} s_{j} Q_{3-j} \beta}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta\left(\theta_{j}\right)}$
Since the immediate determination of the constants α and β is not an easy matter, we shall follow an indirect approach. We shall construct the solution of the same problem by means of a successive application of the Fourier and Laplace transformations, as is done in [3], and later compare this solution with (2.8); in this way we arrive at the result

$$
\begin{align*}
\varphi & =-\frac{N_{\rightarrow}}{\pi \tau d_{1}} \int_{0}^{\infty} R_{1}^{\circ 0}(y, t, k) \frac{\cos k x}{k} d k+\frac{T_{\rightarrow}}{\pi d_{1}} \int_{0}^{\infty} R_{2}^{\infty 0}(y, t, k) \frac{\sin k x}{k} d k \\
\psi & =\frac{N_{\rightarrow}}{\pi d_{1}} \int_{0}^{\infty} S_{1}^{\infty}(y, t, k) \frac{\sin k x}{k} d k+\frac{T_{\rightarrow}}{\pi d_{1}} \int_{0}^{\infty} S_{2}^{\infty 0}(y, t, k) \frac{\cos k x}{k} d k \tag{2.9}
\end{align*}
$$

Here $d_{1}=\rho d$, where ρ is the density of the medium, and N_{\rightarrow}, T are the normal and tangential components of the impulse

$$
\begin{align*}
& R_{1}{ }^{\circ \circ}=\frac{1}{2 \pi j} \int_{\sigma-i \infty}^{\sigma+i \infty} \sum_{j=1}^{2} \frac{\lambda_{j}^{\infty 0} P_{j}^{\circ 0} M_{3-j}^{\circ 0}}{\lambda_{j}^{\circ 0}-\lambda_{3-i}^{\circ 0}} e^{\theta} \frac{d \zeta}{\Delta^{00}(\zeta)} \\
& R_{2}{ }^{\circ \rho}=\frac{1}{2 \lambda j} \int_{\sigma-i \infty}^{\sigma+i \infty} \sum_{j=1}^{2} \frac{\lambda_{j}{ }^{\circ} P_{j}{ }^{\circ 0} \lambda_{3-j}{ }^{\circ \circ} S_{3-j}{ }^{\circ 0} l^{\theta}}{\lambda_{j}{ }^{\circ 0}-\hat{\lambda}_{3-j}^{\circ}} \frac{d \zeta}{\Delta^{\circ 0}(\zeta)} \tag{2.10}
\end{align*}
$$

$$
\begin{aligned}
& \vartheta=\vartheta(\zeta)=\left(\zeta t-\lambda_{j}{ }^{\circ \circ} y^{\circ}\right) k
\end{aligned}
$$

The functions $\lambda_{j}{ }^{\circ 0}, M_{j}{ }^{\circ 0}, S_{j}{ }^{\circ 0}, P_{j}{ }^{\circ 0}, Q_{j}{ }^{\circ 0}$ are obtained from the λ_{j}, $M_{j}, S_{j}, P_{j}, Q_{j}$ which were introduced earlier, by replacing θ by i / ζ. In order to determine a and β; one must compute, for example, $\partial \phi / \partial x$. From the solutions (2.9) we obtain

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=\frac{N_{\rightarrow}}{\pi d_{1}} \int_{0}^{\infty} \int_{l_{2}} \sum_{j=1}^{2} \frac{\lambda_{j}^{\circ 0} P_{j}^{00} M_{3-j}{ }^{\circ 0} e^{\theta^{00}}}{\left(\lambda_{j}^{\circ 0}-\lambda_{3-j}^{\circ 0}\right)\left(i x-\lambda_{j}^{\circ 0} y+\zeta^{t}\right)} \frac{d \zeta d k}{i \Delta^{00}(\zeta)}+ \\
& +T_{\rightarrow} \int_{0}^{\infty} \int_{i_{2}} \sum_{j=1}^{2} \frac{\lambda_{i}^{00} \lambda_{3-i}^{00} P_{j}^{00} S_{j}^{\circ 0 \%} e^{\theta 00} d \zeta d k}{\left(\lambda_{j}^{\circ 0}-\lambda_{3-j}^{00}\right)\left(i x-\lambda_{j}^{\circ 0} y+\zeta t\right) \Delta^{00}(\zeta)} \tag{2.11}\\
& \theta^{00}=\theta^{00}(\zeta)=\left(i x-\zeta t-\lambda_{j}{ }^{\circ 0} y\right) k
\end{align*}
$$

Interchanging the order of integrations, choosing the contour l_{2} in such a manner that it encloses only the singularities corresponding to the roots of the equation $i x-: \lambda_{j}{ }^{\circ} y+\zeta \zeta=0$; employing Jordan's lemma and the theorem of residues of Cauchy, we obtain, in terms of the variable θ :

$$
\begin{gather*}
\frac{\partial \varphi}{\partial x}=\sum_{j=1}^{2}\left\{-\frac{N_{\rightarrow}}{\pi d_{\mathbf{1}}} \operatorname{Re} \frac{\lambda_{j} P_{3-j} M_{3-j}}{\left(\lambda_{j}-\lambda_{3-j}\right) \delta_{j}^{\prime}} \frac{i}{\Delta\left(\theta_{j}\right)}-\frac{T_{\rightarrow}}{\pi d_{1}} \operatorname{Re} \frac{\lambda_{j} \lambda_{3-j} P_{j} S_{3-j}}{\left(\lambda_{j}-\lambda_{3-j}\right) \delta_{j}^{\prime}} \frac{i}{\Delta\left(\theta_{j}\right)}\right\} \tag{2.12}\\
\delta_{j}^{\prime}=-x+\lambda_{j}^{\prime}\left(\theta_{i}\right) y
\end{gather*}
$$

Upon comparison of this equation with the one resulting from the fundamental equation (2.8), it follows that

$$
\begin{equation*}
\alpha=-\frac{N_{\rightarrow}}{\pi}, \quad \beta=-\frac{T_{\rightarrow}}{\pi d_{1}}, \quad \tag{2.13}
\end{equation*}
$$

which completes the solution of the problem posed at the outset. The determinant $\Delta(\theta)$ is given by

$$
\begin{align*}
& \Delta(\theta)=-c \theta\left(\theta^{2}+\lambda_{1}^{2}\right)\left(\theta^{2}+\lambda_{2}{ }^{2}\right) \sqrt{a^{-1}-\theta^{2}} \mathrm{R}(\theta) \\
& R(\theta)=\left\{\left[a^{2}-(c-d)^{2}\right] \theta^{2}-a\right\} \sqrt{d^{-1}-\theta^{2}}-a \sqrt{a^{-1}-\theta^{2}} \tag{2.14}
\end{align*}
$$

Rayleigh's function $R(\theta)$ for the anisotropic media was studied in [1]. It has two real symmetric roots, which correspond to the speed of propagation of Rayleigh waves on the surface of the given medium. The qualitative picture of the motion in an anisotropic medium is analogous to the motion in an isotropic medium. A disturbance which originates at the origin of coordinates at the time $t=0$ is propagated throughout the entire half-space, dying out gradually at all interior points. With the passage of time almost all the energy of the disturbance is concentrated in the neighborhood of the surface of the medium and behaves, at sufficiently large distances from the center of the disturbance, as a Rayleigh surface wave. For $c<a-d$ we obtain from (2.8) the known solution of Lamb's problem for an isotropic medium.
3. Lamb's problem with mixed boundary conditions. The boundary conditions will be taken as in [4]:

$$
\begin{align*}
& \tau_{x y}=0 \quad \text { for } y=0,-\infty<x<\infty \tag{3.1}\\
& \sigma_{y}=0 \quad \text { for } x>0, v=0 \quad \text { for } x<0
\end{align*}
$$

The condition $\tau_{x y}=0$ at boundary points yields

Putting

$$
\begin{equation*}
\theta\left(M_{1} \omega_{1}+M_{2} \omega_{2}\right)=i \beta \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1} S_{1} \omega_{1}+\lambda_{2} S_{2 \omega_{2}}=A(\theta), \operatorname{Re} A(\theta)=0 \quad(\theta>0) \tag{3.3}
\end{equation*}
$$

there occurs the sought function $A(\theta)$, which will be supposed to be bounded at infinity. The third boundary condition gives

$$
\begin{equation*}
\sum_{j=1}^{2}\left(\lambda_{j}^{2} P_{j}+\theta^{2} Q_{j}\right) \omega_{j}=B(\theta), \quad \operatorname{Re} B(\theta)=0 \quad(\theta<0) \tag{3.4}
\end{equation*}
$$

while (3.1) and (3.3) together give

$$
\begin{equation*}
\omega_{j}(\theta)=-\frac{\lambda_{3-j} S_{3-j} i \beta-\theta M_{3-j} A(\theta)}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta\left(\theta_{j}\right)} \tag{3.5}
\end{equation*}
$$

Substituting into (3.4), we then obtain
where

$$
\begin{equation*}
T_{1}{ }^{\circ} A(\theta)-T_{2}{ }^{\circ} i \beta=B(\theta) \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
T_{1}^{\circ}(\theta)=\sum_{j=1}^{2} \frac{\lambda_{j} P_{j}+\theta^{2} Q_{j}}{\lambda_{j}-\lambda_{3-j}} \frac{\theta M_{3-j}}{\Delta(\theta)}, \quad T_{2}^{\circ}(\theta)=\sum_{j=1}^{2} \frac{\lambda_{j}^{2} P_{j}+\theta^{2} Q_{j}}{\lambda_{j}-\lambda_{3-j}} \frac{\lambda_{3-j} s_{3-j}}{\Delta(\theta)} \tag{3.7}
\end{equation*}
$$

In the sequel it will be convenient to replace the constants a, d, c, respectively, by a^{-2}, d^{-2}, c^{-2}. Thus, the sought function $A(\theta)$, which is to be analytic in the upper half-plane, will satisfy on the real axis the conditions

$$
\begin{equation*}
\operatorname{Re} A(\theta)=0 . \quad(\theta>-a), \quad \operatorname{Re}\left[T_{1}^{\circ} A(\theta)-T_{2}^{\circ} i \beta\right]=0 \quad(\theta<-a) \tag{3.8}
\end{equation*}
$$

Since the functions P_{j}, Q_{j}, S_{j}, M are real for real values of the variable θ, in view of the value of the determinant $\Delta(\theta)$ and of the choice of the branches λ_{j} and of the roots $\sqrt{ }\left(a^{2}-\theta^{2}\right)$ and $\sqrt{ }\left(d^{2}-\theta^{2}\right)$ (they are supposed to be positive on the upper banks of the cuts $(-a, a)$, (-d, d)), we have that the function T_{2} must be real and the function T_{1} must be purely imaginary when $\theta<-: d$. Consequently for $\theta<-$: d we must have that: $\operatorname{Im} A(\theta)=0$, that is to say, the function $A(\theta)$ may be continued analytically across this segment of the axis. Denoting by f its real part on the segment ($-d,-a$), we get

$$
\begin{equation*}
A(\theta)=\frac{\sqrt{d+\theta}}{2 \pi i} \int_{-d}^{-a} \frac{f(\xi) d \xi}{\sqrt{d+\xi}(\xi-\theta)}=\sqrt{d+\theta} \chi(\theta) \tag{3.9}
\end{equation*}
$$

By the radical $\sqrt{ }(d+\theta)$ is to be understood here that branch which is positive on the upper bank of the cut $\theta>-d$. For the function $\chi(\theta)$, on the same upper bank, we obtain

$$
\begin{gather*}
\frac{\chi^{+}}{\left(\lambda_{1}-\lambda_{2}\right) \Delta(\theta)}++\frac{\overline{\chi^{+}}}{\left(\bar{\lambda}_{1}-\lambda_{2}\right) \bar{\Delta}(\theta)}=2 \frac{\operatorname{Re} T_{2}{ }^{\circ} i \beta}{\sqrt{d+\theta} Q_{0}(\theta)} \\
Q_{0}=\sum_{j=1}^{2}(-1)^{3-j}\left(\lambda_{j}^{2} P_{j}+\theta^{2} Q_{j}\right) M_{3-j} \tag{3.10}
\end{gather*}
$$

Observing the value of $\Delta(\theta)$, and the fact that $\bar{\chi}^{+}=-\chi^{-:}$, where $\chi^{-:}$ is the value attained by $\chi^{(\theta)}$ when approaching the same segment of the real axis from below, we deduce that

$$
\begin{gather*}
\chi^{+}=G \chi^{-}+g \tag{3.11}\\
G(\theta)=-G_{1}(\theta)=-\frac{\left(\lambda_{1}-\lambda_{2}\right) R(\theta)}{\left(\lambda_{1}-\lambda_{2}\right) R(\theta)}, \quad g(\theta)=\frac{2 \operatorname{Rei} T_{2}{ }^{\circ}\left(\lambda_{1}-\lambda_{2}\right) \Delta(\theta)}{\sqrt{d+\theta} Q_{0}(\theta)} \beta
\end{gather*}
$$

Thus we are led to a well-known boundary-value problem, whose solution, satisfying all the stated conditions, can be put in the form

$$
\begin{equation*}
\chi(\theta)=\beta \frac{X_{0}(\theta)}{2 \pi i} \int_{-d}^{-a} \frac{g_{1}(\xi)\left(\lambda_{1}-\lambda_{2}\right) \Delta(\xi)}{X_{0}^{+}(\xi)(\xi-0)} d \xi+X_{0}(\theta) i \beta_{1} \tag{3.12}
\end{equation*}
$$

$$
g_{1}(\theta)=\frac{2 R_{e i} T_{2}{ }^{\circ}}{\sqrt{d+0} Q_{0}(\theta)}, \quad X_{0}(\theta)=\frac{1}{\sqrt{d+\theta} \sqrt{a+\theta}} \exp \frac{1}{2 \pi i} \int_{-d}^{-a} \frac{\ln G_{1} d \xi}{\xi-\theta}
$$

In view of (2.8) we have

$$
\begin{align*}
& \Phi_{1}{ }^{\prime}+\Phi_{2}{ }^{\prime}=\sum_{j=1}^{2} \frac{\left(\theta_{j} M_{3-j} A(\theta)-\lambda_{3-j} S_{3-j} i \beta\right) \lambda_{j} P_{j}}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta\left(\theta_{j}\right)} \\
& \Psi_{1}{ }^{\prime}+\Psi_{2}{ }^{\prime}=\sum_{j=1}^{2} \frac{\left(\theta_{j} M_{3-j} A(\theta)-\lambda_{3-j} S_{3-j} i \beta\right) \theta_{j} Q_{j}}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta\left(\theta_{j}\right)} \tag{3.13}
\end{align*}
$$

The constant β_{1} may be obtained from the condition that the solution must be bounded for $\theta=-c_{0}$, where c_{0}^{-1} is the speed of the Rayleigh waves. In view of (3.13) this means that

$$
\begin{equation*}
\sum_{j=1}^{2} \frac{\theta M_{3-j} \lambda_{j} P_{j}}{\lambda_{j}-\lambda_{3-j}} A(\theta)-\sum_{j=1}^{2} \frac{\lambda_{j} \lambda_{3-j} P_{j} S_{3-j}}{\lambda_{j}-\lambda_{3-j}} i \beta=0 \quad \text { for } \theta=-c_{0} \tag{3.14}
\end{equation*}
$$

which in turn implies that, since $\Delta\left(-c_{0}\right)=0$, that the numerator of the expression for $\Psi_{1}{ }^{\prime}+\Psi_{2}{ }^{\prime}$ is also zero, thus enabling us to evaluate the constant β_{1} by means of the constant β, and to write that

$$
\begin{equation*}
A(\theta)=i \beta A_{0}(\theta) \tag{3.15}
\end{equation*}
$$

Substituting this into (3.13), we obtain

$$
\begin{align*}
& \Phi_{1}{ }^{\prime}+\Phi_{2}{ }^{\prime}=i \beta \sum_{j=1}^{2} \frac{\left(\theta_{j} M_{3-j} A_{0}(\theta)-\lambda_{3-j} S_{3-j}\right) \lambda_{j} P_{j}}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta(\theta)} \tag{3.16}\\
& \Psi_{1}{ }^{\prime}+\Psi_{2}{ }^{\prime}=i \beta \sum_{j=1}^{2} \frac{\left(\theta_{j} M_{3-j} A_{0}(\theta)-\lambda_{3-j} S_{3-j}\right) \theta_{j} Q_{j}}{\left(\lambda_{j}-\lambda_{3-j}\right) \Delta\left(\theta_{j}\right)} \tag{3.17}
\end{align*}
$$

Since for large θ the term containing $A_{0}(\theta)$ in (3.17) tends to zero, and Expression (3.17) tends to the solution which corresponds to the action of a purely tangential component of the impulse, we must have that $\beta=-T_{\rightarrow} / \pi d_{1}$; and thus the problem has been entirely solved. It may be readily verified that when $c^{-2}=a^{-2}-: d^{-2}$, we are led back to the results obtained in the isotropic case in [4].

4. Reflection of plane waves from rectilinear boundaries.

 The consideration of the reflection of a plane wave from a rectilinear boundary leads to a homogeneous Hilbert problem. The evolution of the wave is given in the form$$
\begin{gather*}
\varphi_{1}^{\circ}\left(\Omega_{1}^{\circ}\right)+\varphi_{2}^{\circ}\left(\Omega_{2}^{\circ}\right)=\sum_{j=1}^{2} \lambda_{j}^{\circ} P_{j}^{\circ} \omega_{j}\left(\Omega_{j}^{\circ}\right) \\
\Omega_{j}^{\circ}=t-\theta_{0} x-\lambda_{j}\left(\theta_{0}\right) y \tag{4.1}\\
\psi_{1}^{\circ}\left(\Omega_{1}^{\circ}\right)+\psi_{2}^{\circ}\left(\Omega_{2}^{\circ}\right)=\sum_{j=1}^{2} \theta_{0} Q_{j}^{\circ} \omega_{j}\left(\Omega_{j}^{\circ}\right)
\end{gather*}
$$

where the ω_{j} are branches of functions which are single-valued on the above-mentioned Hiemann surface. The boundary conditions are mixed (see Fig. 1; notice that in Figs. 1 and 3 the points ξ_{k}° are the image points, in the plane $x y$ at the instant t, of the branch points θ_{k}°). The reflected waves, corresponding to various boundary conditions, may be easily constructed for $x>0$ and $x<0$. The solution is obtained in the form

$$
\begin{equation*}
\varphi_{1}+\varphi_{2}=\sum_{j=1}^{2}\left(\varphi_{j}^{0}+\varphi_{-j}^{0}+\varphi_{j-3}^{\circ}\right), \quad \psi_{1}+\psi_{2}=\sum_{j=1}^{2}\left(\psi_{j}^{\circ}+\psi_{-j}^{0}+\psi_{j-3}^{\circ}\right) \tag{4.2}
\end{equation*}
$$

where

$$
\varphi_{j}=-\lambda_{j}^{\circ} P_{j}^{\circ} \omega_{j}\left(\Omega_{j}^{\circ}\right)+\lambda_{j}^{\circ} P_{j}^{\circ} C_{j} \omega_{j}\left(\Omega_{-j}^{\circ}\right)+\lambda_{3-j}{ }^{\circ} P_{3-j}{ }^{\circ} D_{3-j} \omega_{j}\left(\Omega_{j-3}{ }^{\circ}\right)
$$

$$
\begin{gather*}
\psi_{j}=\theta_{0} Q_{j}^{\circ} \omega_{j}\left(\Omega_{j}^{\circ}\right)+\theta_{0} Q_{j}{ }^{\circ} C_{j} \omega_{j}\left(\Omega_{-j}^{\circ}\right)+\theta_{0} Q_{3-j} D_{3-j} \omega_{j}\left(\Omega_{j-3}^{\circ}\right) \tag{4.3}\\
\lambda_{j}^{\circ}=\lambda_{j}\left(\theta_{0}\right), \quad{ }^{\circ}{ }_{j}^{\circ}=P_{j}\left(\theta_{0}\right), \quad Q_{j}^{\circ}=Q_{j}\left(\theta_{0}\right), \Omega_{-j}^{\circ}=t-\theta_{0} x+\lambda_{j}^{\circ}, \ldots
\end{gather*}
$$

and the values of the constants C_{j} and D_{j} depend on the boundary conditions. Thus for stress-free boundaries we have

$$
\begin{gather*}
C_{j}=\frac{\lambda_{j}^{\circ} S_{j}^{\circ} M_{3-j}^{\circ}+\lambda_{3-j}{ }^{\circ} S_{3-j}{ }^{\circ} M_{j}^{\circ}}{\left(\lambda_{j}^{\circ}-\lambda_{3-j}^{\circ}\right) \Delta^{\circ}}, \quad D_{3-j}=-\frac{2 \lambda_{j}^{\circ} S_{j}^{\circ} M_{j}^{\circ}}{\left(\hat{\lambda}_{j}^{\circ}-\lambda_{3-j}^{\circ}\right) \Delta^{\circ}} \\
\Delta^{\circ}=\Delta\left(\theta_{0}\right) \tag{4.4}
\end{gather*}
$$

and for the boundary conditions applicable for $x<0$ we have

$$
\begin{equation*}
C_{1}^{\prime}=D_{1}^{\prime}=-1, \quad C_{2}^{\prime}=D_{2}^{\prime}=0 \tag{4.5}
\end{equation*}
$$

In the sequel we shall take for ω_{j} a step function $\omega_{0}(\xi)$, which equals zero for $\xi>0$ and equals unity for $\xi<0$. For this function the corresponding irrotational disturbance, in the domain $C F D$, corresponding

Fig. 1.

Fig. 2.
to the root λ_{1}, is just $\phi^{\circ}+\phi_{-1}^{\circ}+\phi_{-1}{ }^{\circ 0}$; while in the domain $C E D$ the disturbance corresponding to the root λ_{2} equals $\phi^{\circ}+\phi_{-2}{ }^{\circ}+\phi_{-2}{ }^{00}$. Similarly, the irrotational disturbances in the domains $G F F^{\prime}$ and $G H E E^{\prime}$ have intensities $\phi_{1}+\phi_{-1}{ }^{\circ \prime}+\phi_{-1}{ }^{100}$ and $\phi_{2}{ }^{\circ}+\phi_{-2}{ }^{\circ}+\phi_{-2}{ }^{100}$, respectively. In these domains one may also readily determine the intensity of the corresponding equivoluminal disturbances $\Psi_{j}^{0}+\Psi_{-j}^{0}+\Psi_{-j}^{00}$ and $\Psi_{j}+\Psi_{-j}^{\circ}+\Psi_{-j}^{\prime o \circ}$ The functions $\Phi_{j}\left(\theta_{j}\right)$ and $\Psi_{j}\left(\theta_{j}\right)^{-j}$, which describe the disturbance in the domain $O G F G B O$ are defined in the upper halfplanes of the Riemann surface. Since the arcs CFG and BEA are the envelopes of the straight lines $t-\theta_{j} x+\lambda_{j} y=0$ for real values of θ_{j} and λ_{j}, the points E and F in the $x y$-plane must correspond to a single point θ_{0}, lying on the segment ($-a, a$) (see Fig. 2). At this point the single-valued and piecewise constant (on the mentioned interval) functions $\Phi_{1}\left(\theta_{1}\right)+\Phi_{2}\left(\theta_{2}\right)$ and $\Psi_{1}\left(\theta_{1}\right)+\Psi_{2}\left(\theta_{2}\right)$ possess a finite discontinuity. Representing these functions by means of integrals of Cauchy type and differentiating, we easily obtain in the neighborhood of θ_{0}

$$
\begin{array}{rlr}
\Phi_{1}{ }^{\prime}(\theta)+\Phi_{2}{ }^{\prime}(\theta) \approx \frac{\alpha_{0}}{\pi i\left(\theta-0_{0}\right)}, & \alpha_{0}=-2 \frac{\lambda_{1}{ }^{\circ} S_{1}{ }^{\circ}+\lambda_{2}{ }^{\circ} S_{2}{ }^{\circ}}{\Delta^{\circ}} \sum_{j=1}^{2} \frac{\lambda_{j}{ }^{\circ} P_{j}{ }^{\circ} M_{3-j}}{\lambda_{j}{ }^{\circ}-\lambda_{3-j}} \tag{4.6}\\
\Psi_{1}{ }^{\prime}(\theta)+\Psi_{2}{ }^{\prime}(\theta) \approx \frac{\beta_{0}}{\pi i\left(\theta-\theta_{0}\right)}, & \beta_{0}=-20_{0} \frac{\lambda_{1}{ }^{\circ} S_{1}{ }^{\circ}+\lambda_{2}{ }^{\circ} S_{2}{ }^{\circ}}{\Delta^{\circ}} \sum_{j=1}^{2} \frac{\lambda_{j}{ }^{\circ} M_{3-j}}{\lambda_{j}{ }^{\circ}-\lambda_{3-j}{ }^{\circ}}
\end{array}
$$

The fact that the shear stress is zero on the boundary of the halfplane gives

$$
\begin{equation*}
\operatorname{Re}\left(M_{1} \omega_{1}+M_{2 \omega_{2}}\right)=0 \tag{4.7}
\end{equation*}
$$

The fact that there is zero normal stress for $x>0$ gives

$$
\begin{equation*}
\operatorname{Re}\left(\lambda_{1} S_{1} \omega_{1}+\lambda_{2} S_{2} \omega_{2}\right)=0 \quad(\theta>0) \tag{4.8}
\end{equation*}
$$

The absence of vertical displacement for $x<0$ gives

$$
\begin{equation*}
\operatorname{Re}\left(T_{1 \omega_{1}}+T_{2 \omega_{2}}\right)=0, \quad T_{j}=\lambda_{j}{ }^{2} P_{j}+\theta^{2} Q_{j} \quad(\theta<0) \tag{4.9}
\end{equation*}
$$

Since there is no source of vibrations at the origin, it follows that

$$
M_{1} \omega_{1}+M_{2 \omega_{2}}=0
$$

and putting $\lambda_{1} S_{1} \omega_{1}+\lambda_{2} S_{2} \omega_{2}=A(\theta)$, we have

$$
\operatorname{Re} A(\theta)=0, \theta>0
$$

Expressing ω_{j} by means of $A(\theta)$ and substituting in (4.13), we obtain

$$
\begin{equation*}
\operatorname{Re} \frac{T_{1} M_{2}-T_{2} M_{1}}{\lambda_{1}-\lambda_{2}} \frac{A(\theta)}{\Delta(\theta)}=0 \quad(\theta<0) \tag{4.10}
\end{equation*}
$$

It is readily seen that the imaginary part of $A(\theta)$ is zero for $\theta<-d$; hence according to (3.9) we obtain $A=\sqrt{ }\left(d+\theta A_{1}\right)$, where

$$
\begin{equation*}
\operatorname{Re} \frac{T_{1} M_{2}-T_{2} M_{1}}{\lambda_{1}-\lambda_{2}} \frac{A_{1}(\theta)}{\Delta(\theta)}=0 \quad(-d<\theta<-a) \tag{4.11}
\end{equation*}
$$

The function $A_{1}(\theta)$ has a first-order pole at the point $\theta=\theta_{0}$, while the resulting solution; as before, must be bounded for $\theta=-c_{0}$. Introducing the new function $A_{2}=\left(\theta-\theta_{0}\right) A_{1} /\left(\theta-: c_{0}\right)$, we obtain on the upper bank of the segment ($-d,-a$)

$$
\begin{equation*}
\operatorname{He} \frac{T_{1} M_{2}:-T_{2} M_{1}}{\lambda_{1}-\lambda_{1}} \frac{A_{2}+(\theta)}{\sqrt{a^{2}-\theta^{2}} R(\theta)}=0 \quad(-d<0<-a) \tag{4.12}
\end{equation*}
$$

where $A_{2}{ }^{+}$is the limiting value of the function A_{2} on the segment ($-d$, $-a$) when this segment is approached from above. Denoting by $A_{2}{ }^{-\prime}$ its
boundary value when this segment is approached from below, one sees readily that ${\overline{A_{2}}}^{+}=A_{2}^{-}$. This allows us to reduce the problem to the solution of the following homogeneous Hilbert problem:

$$
\begin{equation*}
A_{2}^{+}=G A_{2}^{--}, \quad G=-\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1}+\lambda_{2}} \frac{R(\theta)}{\bar{R}(\theta)} \tag{4.13}
\end{equation*}
$$

whose general solution has the form

$$
\begin{equation*}
A_{2}(\theta)=i \beta \frac{X_{0}(\theta)}{\sqrt{a+\theta} \sqrt{d+\theta}}, \quad X_{0}(\theta)=\exp \int_{-d}^{-a} \frac{\ln G_{1}}{\xi-\theta} d \xi, \quad G_{1}=-G \tag{4.14}
\end{equation*}
$$

with β a real constant. The radical is understood to denote the branches which are positive on the upper banks of the cuts $\theta>-a$ and $\theta>-d$. Analogously for $A_{1}(\theta)$ we obtain

$$
\begin{equation*}
A_{1}(\theta)=i \beta \frac{\theta+c_{3}}{\theta-\theta_{0}} \frac{X_{0}(\theta)}{\sqrt{a+\theta} \sqrt{d+\theta}} \tag{4.15}
\end{equation*}
$$

The constants may be evaluated from a consideration of the singularities of the functions $\Phi_{1}^{\prime}(\theta)+\Phi_{2}^{\prime}(\theta)$ and $\Psi_{1}^{\prime}(\theta)+\Psi_{2}^{\prime}(\theta)$ at $\theta=\theta_{0}$. According to (4.6), letting θ tend to θ_{0}, we obtain

$$
\begin{equation*}
\beta=\frac{2\left(\lambda_{1}{ }^{\circ} S_{1}^{\circ}+\lambda_{2}{ }^{\circ} S_{2}{ }^{\circ}\right)}{\pi\left(\theta_{0}+c_{0}\right)} \sqrt{a+0_{0}} \exp \left(-\frac{1}{2 \pi i} \int_{-d}^{-a} \frac{\ln G_{1}}{\xi-\theta_{0}} d \xi\right) \tag{4.16}
\end{equation*}
$$

and the problem is entirely solved. Setting $c^{-2}=a^{-2}-d^{-2}$, we are led to the solution of the same problem for an isotropic body:

$$
\begin{gather*}
G_{1}=-\frac{F(\theta)}{\bar{F}(\theta)}, \quad F(\theta)=\left(d^{2}-2 \theta^{2}\right)^{2}+4 \theta^{2} \sqrt{a^{2}-\theta^{2}} \sqrt{d^{2}-\theta^{2}} \\
\Phi_{2^{\prime}}(\theta)=\Psi_{2^{\prime}}(\theta)=0 \tag{4.17}\\
\Phi_{1^{\prime}}(\theta)=\left(a^{-2}-d^{-2}\right) \frac{d^{2}-2 \theta^{2}}{F(\theta)} A(\theta), \quad \Psi_{2^{\prime}}(\Psi)=\left(a^{-2}-d^{-2}\right) \frac{\sqrt{a^{2}-\theta^{2}}}{F(\theta)} A(\theta)
\end{gather*}
$$

5. Diffraction by a rigid slit. For an isotropic body this problem has already been studied in [5] and [6]. The solutions of Equations (1.1), of the form (1.4), will be constructed for the displacements. According to [1], we obtain

$$
\begin{align*}
& u(x, y, t)=\operatorname{Re}\left[u_{1}\left(\theta_{1}\right)+u_{2}\left(\theta_{2}\right)\right]=\sum_{j=1}^{2} \operatorname{Re} \int^{\theta_{j}} K(\xi) \lambda_{j}(\xi) \omega_{j}(\xi) d \xi \tag{5.1}\\
& v(x, y, t)=\operatorname{Re}\left[v_{1}\left(\theta_{1}\right)+v_{2}\left(\theta_{2}\right)\right]=\sum_{j=1}^{2} \operatorname{Re} \int^{\theta_{j}} L_{j}(\xi) \omega_{j}(\xi) d \xi
\end{align*}
$$

where

$$
\begin{equation*}
L_{j}(\xi)=a^{-2 \xi^{2}}+d \lambda_{j}{ }^{2}(\xi)-1, \quad K(\xi)=c^{-2} \xi \tag{5.2}
\end{equation*}
$$

and the variables θ_{j} are defined by the relations (1.15). The elastic medium occupies the plane with a cut along $y=0, x>0$. For $t<0$, in the left half-plane $x<0$, we have a plane wave

$$
\begin{gather*}
u^{\circ}(x, y, t)=-K\left(\theta_{0}\right)\left[\lambda_{1}{ }^{\circ} \omega_{1}{ }^{\circ}\left(\Omega_{1}\right)+\lambda_{2}{ }^{\circ} \omega_{1}{ }^{\circ}\left(\Omega_{2}{ }^{\circ}\right)\right] \tag{5.3}\\
v^{\circ}(x, y, t)=L_{1}\left(\theta_{0}\right) \omega_{1}^{\circ}\left(\Omega_{1}{ }^{\circ}\right)+L_{2}\left(\theta_{0}\right) \omega_{2}{ }^{\circ}\left(\Omega_{2}{ }^{\circ}\right) \\
\Omega_{j}{ }^{\circ}=t-\theta_{0} x-\lambda_{j}{ }^{\circ} y \quad\left(0<\theta_{0}<. a\right)
\end{gather*}
$$

which impinges at the time $t=0$ on the edge of the slit. The diffraction pattern for $t>0$ is depicted in Fig. 3.

The reflection of the plane waves in the neighborhood of the lower

Fig. 3.

Fig. 4.
boundary of the slit may be obtained by a calculation of the boundary conditions corresponding to a wave packet of plane waves of the form

$$
\begin{align*}
u^{\circ \circ}(x, y, t) & =\sum_{j=1}^{2} K^{\circ}\left[-\lambda_{j}{ }^{\circ} \omega_{j}{ }^{\circ}\left(\Omega_{j}{ }^{\circ}\right)+\lambda_{j}{ }^{\circ} N_{j} \omega_{j}{ }^{\circ}\left(\Omega_{j}^{\circ}\right)+\lambda_{3-j}^{\circ} E_{j} \omega^{\circ}\left(\Omega_{3-j}^{{ }^{\circ}-j}\right)\right] \\
v^{\circ \circ}(x, y, t) & =\sum_{j=1}^{2}\left[L_{j}^{\circ} \omega_{j}^{\circ}\left(\Omega_{j}{ }^{\circ}\right)+L_{j}{ }^{\circ} N_{j} \omega_{j}\left(\Omega_{j}{ }^{\circ \prime}\right)+L_{j}{ }^{\circ} E_{j} \omega_{j}{ }^{\circ}\left(\Omega_{3-j}^{\left.\left.\circ{ }^{\circ}\right)\right]}\right.\right. \\
\Omega_{j}{ }^{\prime \prime} & =t-\theta_{0} x+\lambda_{j}{ }^{\circ} y, \quad K^{\circ}=K\left(\theta_{0}\right), \quad L_{j}{ }^{\circ}=L_{j}^{\circ}\left(\theta_{0}\right) \tag{5.4}
\end{align*}
$$

In order to fulfill the conditions for $y=0$ we must have

$$
\begin{equation*}
N_{j}=\frac{\lambda_{j}{ }^{\circ} L_{3-j}^{\circ}+\lambda_{3-} L_{j}{ }^{\circ}}{\lambda_{j}^{\circ} L_{3-j}-\lambda_{3-j} \frac{L_{j}}{}}, \quad E_{j}=\frac{2 \lambda_{j}{ }^{\circ} L_{j}{ }^{\circ}}{\lambda_{j}{ }^{\circ} L_{3-j}^{\circ}{ }^{\circ}-\lambda_{3-j}^{\circ} L_{j}} \tag{5.5}
\end{equation*}
$$

Let us formulate our boundary-value problem for the functions

$$
\begin{equation*}
u(\theta)=u_{1}(\theta)+u_{2}(\theta), \quad v(\theta)=v_{1}(\theta)+v_{2}(\theta)\left(\theta=\frac{t}{x}\right) \tag{5.6}
\end{equation*}
$$

i.e. let us find the values of these functions on the real axis, where the variables θ_{1} and θ_{2}, defined by the relations (1.15), coincide. The functions u_{j} and v_{j} represent the disturbance in the domain $A F_{1} G F B$ of the planes θ_{j} of the Riemann surface, where cuts have to be made, respectively, along the segments of the real axis $\theta_{1}>-a$ and $\theta_{2}>-d$ (see Fig. 4). Since the function $\omega_{j}^{\circ}(\xi)$ is a step function which equals zero for $\xi<0$ and equals unity for $\xi>0$, it follows that the functions Re $u(\theta)$ and Re $v(\theta)$ are piecewise constant on the boundaries of the cut, and that

$$
\operatorname{Re} u(\theta)=\operatorname{Re} v(\theta)=0 \quad\left(\theta>\theta_{0}\right)
$$

$$
\begin{equation*}
\operatorname{Re} u(\theta)=\alpha^{\circ}, \quad \operatorname{Re} v(\theta)=\beta^{\circ} \quad\left(-a<\theta<\theta_{0}\right) \tag{5.7}
\end{equation*}
$$

where θ_{0} on the upper bank of the cut corresponds to the points E and F, and on the lower bank corresponds to the points E_{1} and F_{1} (see Fig. 3):

$$
\begin{equation*}
\alpha^{\circ}=u_{1}^{\circ}+u_{2}^{\circ}=k^{\circ}\left(\lambda_{1}^{\circ}+\lambda_{2}^{\circ}\right), \quad \beta^{\circ}=v_{1}^{\circ}+v_{2}^{\circ}=L_{1}^{\circ}+L_{2}^{\circ} \tag{5.8}
\end{equation*}
$$

Performing a cut in the plane θ_{1} along the segment $(-d,-a)$, and denoting by f_{1} and f_{2} respectively the real values of $u(\theta)$ and $v(\theta)$ along this segment, we obtain readily, as in [5]

$$
\begin{align*}
& u^{\prime}(\theta)=\frac{\alpha^{\circ}}{\pi i} \frac{1}{\theta-\theta_{0}} \frac{\sqrt{d+\theta_{0}}}{\sqrt{d+\theta}}+\frac{1}{\pi i \sqrt{d+\theta}} \int_{-d}^{-a} \frac{\sqrt{d+\xi} f_{1}^{\prime}}{\xi-\theta} d \xi \tag{5.9}\\
& v^{\prime}(\theta)=\frac{\beta^{\circ}}{\pi i} \frac{1}{\theta-\theta_{0}} \frac{\sqrt{d+\theta_{0}}}{\sqrt{d+\theta}}+\frac{1}{\pi i \sqrt{d+\theta}} \int_{-d}^{-a} \frac{\sqrt{d+\xi}}{\xi-\theta} f^{\prime}{ }_{2} d \xi
\end{align*}
$$

Let us put

$$
\begin{array}{ll}
A(\theta)=\frac{\alpha^{\circ}}{\pi i} \sqrt{d+\theta_{0}}+\left(\theta-\theta_{0}\right) \Phi^{\circ \circ}(\theta), & \Phi^{\circ \circ}(\theta)=\frac{1}{\pi i} \int_{-d}^{-a} \frac{\sqrt{d+\xi}}{\xi-\theta} f_{1}^{\prime} d \xi \\
B(\theta)_{2}^{-}=\frac{\beta_{n}}{\pi i} \sqrt{d+\theta_{0}}+\left(\theta-\theta_{\eta}\right) \Psi^{\circ \circ}(\theta), & \Psi^{\circ \circ}(\Psi)=\frac{1}{\pi i} \int_{-d}^{-a} \frac{\sqrt{d+\xi} f_{2}^{\prime}}{\xi-\theta} d \xi \tag{5.10}
\end{array}
$$

According to (5.1) we have
$K(\theta)\left[\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}\right]=\frac{A(\theta)}{\left(\theta-\theta_{0}\right) \sqrt{d+\theta}}, \quad L_{1} \omega_{1}+L_{2} \omega_{2}=\frac{B(\theta)}{\left(\theta-\theta_{0}\right) \sqrt{d+\theta}}(5$
which implies

$$
\begin{equation*}
\omega_{1}(\theta)=\frac{L_{2} A(\theta)-K \lambda_{2} B(\theta)}{\left(\theta-\theta_{0}\right) \sqrt{d+\theta} \Delta_{1} K} \tag{5.12}
\end{equation*}
$$

$K \Delta_{1}(\theta)=\lambda_{1} L_{2}-\lambda_{2} L_{1}=\frac{\theta \sqrt{a^{2}-\theta^{2}}}{a^{2} b^{2} c^{2}}\left(\lambda_{2}-\lambda_{1}\right)\left[d^{2} \sqrt{a^{2}-\theta^{2}}+a^{2} \sqrt{d^{2}-\theta^{2}}\right]$
Since the function ω_{1} may be continued analytically across the segment ($-d,-a$), i.e. its limiting values from above and below this segment must coincide: $\omega_{1}^{+}=\omega_{1}^{-}$, we are led to the equation

$$
\begin{equation*}
L_{2}\left(\frac{A^{+}}{\Delta_{1}^{+}}+\frac{A^{-}}{\Delta_{1}^{-}}\right)=k \lambda_{2}\left(\frac{B^{+}}{\Delta_{1}^{+}}-\frac{B^{-}}{\Delta_{1}^{-}}\right) \tag{5.13}
\end{equation*}
$$

The right-hand side of this equation is real, while the left-hand side is purely imaginary, because $A^{-}=-\overline{A^{+}}, B^{-}=\overline{-B^{+}}, \Delta_{1}^{-}=-\overline{\Delta_{1}^{+}}$, and L_{2} and K are real on the segment in question; consequently, this equation is equivalent to the following two equations:

$$
\begin{align*}
& A^{+}=G^{\prime} A^{-} \tag{5.14}\\
& B^{+}=G_{1}^{\prime} B^{-}
\end{align*} \quad\left(C^{\prime}=-G_{1}^{\prime}=\frac{\lambda_{2}-\hat{\lambda}_{1}}{\lambda_{2}+\lambda_{1}} \frac{d^{2} \sqrt{a^{2}-\theta^{2}}+a^{2} \sqrt{d^{2}-\theta^{2}}}{d^{2} \sqrt{a^{2}-\theta^{2}}-a^{2} \sqrt{d^{2}-\eta^{2}}}\right)
$$

The solution of these equations, which is bounded at infinity and in the neighborhood of the boundary points, has the form
$A(\theta)=i \alpha^{\circ \circ} \frac{\sqrt{d+\theta}}{\sqrt{a+\theta}} Y_{0}(\theta), \quad B(\theta)=i \beta^{\circ \circ} Y_{0}(\theta), \quad \zeta_{0}(\theta)=\exp \frac{1}{2 \pi i} \int_{-d}^{-a} \frac{\ln G_{1}^{\prime}}{\xi-\theta} d \xi$
The function $\omega_{1}(\theta)$, and together with it the functions $u_{1}{ }^{\prime}(\theta)$ and $v_{1}^{\prime}(\theta)$, is holomorphic in the neighborhood of the point $\theta=-d$, and satisfies

$$
\left|\omega_{1}(\theta)\right|<\frac{N}{|0+d|^{2}}
$$

where N and γ are real constants, with $\gamma<1$. Consequently, the point $\theta=-d$ is a removable singularity for this function. The constants $a^{\circ 0}$ and $\beta^{\circ \circ}$ may be obtained by comparing (5.10) and (5.15) for $\theta=\theta_{0}$; the result is

$$
a^{\infty}=-\alpha^{\circ} \frac{\sqrt{a+\theta_{0}}}{\pi Y_{0}\left(\theta_{0}\right)}, \quad \beta^{\infty}=-\beta^{\circ} \frac{\sqrt{\bar{l}+\theta_{n}}}{\pi Y_{0}\left(\theta_{0}\right)}
$$

If, instead, we choose the functions $\Phi^{\circ 0}(\theta)$ and $\Psi^{\circ 0}(\theta)$ as unknown functions, we obtain nonhomogeneous equations of the type studied in [5]. However, in this case the structure of the solution is much more
complicated than in (5.13) above, where the whole matter reduces to the calculation of a single function $Y_{0}(\theta)$, which may be given in the form of tables [6].

BIBLIOGRAPHY

1. Sveklo, V.A., Uprugie kolebaniia anizotropnogo tela (Elastic vibrations of anisotropic bodies). Uch. zap. LGU No. 17, 1949.
2. Love, A., Matenaticheskaia teoriia uprugosti (Mathematical Theory of Elasticity). 1935.
3. Petrashev', G.I., Marchuk, G.I. and Ogurtsov, K.I., O zadache Lemba v sluchae poluprostranstva (on Lamb's problem for the case of a half-space). Uch. Zap. LGU No. 21, 1950.
4. Sveklo, V.A., Zadacha Lemba pri smeshannykh granichnykh usloviiakh (Lamb's problem with mixed boundary conditions). Dokl. Akad. Nauk SSSR Vol. 95, No. 4, 1954.
5. Fridman, M. M., Difraktsiia ploskoi uprugoi volny (Diffraction of plane elastic waves). Uch. zap. LGU No. 17, 1949.
6. Filippov, A.F., Nekotorye zadachi difraktsii ploskikh uprugikh voln (Some problems in the diffraction of plane elastic waves). PMM Vol. 20, No. 6, 1956.
