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1. The equations of motion in terms of potentials. lhe 
equations of motion for the displacements in a plane anisotrapic medium, 

in the absence of body forces, are [l 1 

where u, v are the components of the displacement vector, a, c, d are 
elastic constants, the density of the medium having been taken equal to 

unity. We shall restrict attention to the case of three elastic constants, 

since the more general case can be treated similarly. Introducing the 

potentials of rotation free and equivoluminal displacements by means of 

the equations 

(1.2) 

we obtain the equations of motion in terms of potentials 

A generalization of the method of complex solutions to the case of 

systems of homogeneous differential equations of the second order has 

already been given in [l 1‘ these results apply immediately to the 
system (1.3) and furnish its solutions of the particular form 

cp = 0 (WV 9 = y (Q) (1.4) 

1324 
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where s1 is defined by 

8r l(s2)t +m(Q)s +n(Q)y _tk(Q) =o (1.5) 

'Ihe following formulas are valid for the derivatives of the function 

$ (analogous formulas hold for the function $1: 

a3q 
ar='ayP'atY' 

= +&[&g nQyy q (a'$P'$-y'= 3) (* 6) 

* 6' = l’(Q) t + m’(Q)2 _tn’(Q)y +k’(n)#o 

It is readily seen that the system (1.3) is satisfied provided that 

1, m, n are such that 

m [am2 +(d +c)n' - 12] 0,' + TZ [(a - c) m2 +dn2 - 12]y’ = () 

n [(d + c) m2 + un2 - P] CD’ - m [dm2 + (a - c) n2 - P] y ’ = 0 (l-7) 

which implies that the following relation must hold: 

m [am2 + (d + c) n2 - Pj n [(a - c) m2 + dn2 - P] 

n [(d + c) nt2 + an2 - P] - m [ dm2 + (n - c) n2 - P] 
=o (1.8) 

and a similar relation between W and Y'. Putting 1 s 1, m = -:8, n = A, 
we may rewrite (1.5) in the form 

6j SC! t - IljZ + hj (Oj) y + kj (Oj) = 0 
(1.9) 

where Xi are the roots of bation (1.8), which may be written 

h4_ a+d-Lo” 

ad 
)L* + ($ - 02) (; - 02) = 0 (L=a2+d2--2) (1.10) 

Obviously the pi are the branches of an algebraic function X which 

is single-valued on a Remann surface athich consists of two planes 8, 

and 8,, cut, respectively, along the intervals (-:1/\/a, l/da), 
G-l/@, l/d/d). ‘III e p anes are attached to each other along a cut that 1 
joins the branch points eke, which are the roots of the equation 

( "+",,"""'!'-i~_ez)if-e2)=0 (1.11) 

lhese roots are not real but complex conjugates, provided that c < 

a -:d. This inequality holds for all anisotropic bodies which are con- 

sidered in 12 1, as may be seen from the following table [ 2 1) where 
unit stress is taken to be lo6 g/cm'. 
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Medium 

Pyrites (cubic) 

(I d C a-:d 

3680 1075 592 2505 

Fluor Spar 1670 345 797 1325 

Rock-salt 477 129 261 348 

Potassium chloride 375 65.5 263.5 309.5 

In order to construct solutions we shall employ the first of the rela- 
tions (1.7). By introducing the functions aj and Yj, corresponding to 
the the root A. we obtain 

I’ 

(D; (e,) = hjPj (ej) oj (O,), Yi (Oj) = QjQj (ej) oj (Oj) (1.12) 

where aj is a branch of an arbitrary algebraic function o which is 
single-valued on the JSemann surface mentioned above, and 

Pj (ej) = (a - c) ej2 + dhj2 - 1, 

The general 
(1.3) is given 

cp (r, y, q = i 

real-valued solution 

by 

Qj 
P 

Qj(ej) = a$“+ (d + c) ?q2 - 1 (1.13) 

(of the form (1.4)) of the system 

In order to obtain the homogeneous solutions of zero order, one has 
to set kj a 0 in (1.9); this yields 

dj = 1 - e,c + hj (ej) 7 = 0 
c 

r_+, q+ b- (1.15) 

which furnishes the correspondence between the above-mentioned Fhemann 
surface and the domain in the eq-plane, where the functions 0,(5, q) 
and e,(t, q) are defined. ‘Ihis is a double-sheeted domain, consisting of 
two separate domains, corresponding to the planes 8, and 8,, attached 
along the cut which joins the branch points (ckof vk”). ‘these two points 
are the images, in the [q-plane, of the branch points eke. ‘Ihe bound- 
aries of these domains are obtained as the envelopes of the straight 
lines (1.15) for real ej and Xi. Solving bation (l.lO), we obtain 

-j- (- l)j 

where the radical sign inside the square brackets refers to that branch 
which is positive for real 8, and the “outer” square root refers to the 
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branch which is positive on the upper banks of the cuts ( -J/da, l/da), 
(-:1/\/d, l/dd). For c < a -: d, outside these cuts on the real axis, Xi 

and A, take on only purely imaginary values. ‘Ihus the points of the 
Riemann surface which lie on the mentioned cuts correspond, in the cq- 
plane, to points of curves on the cone of rays; and the point at infinity 
corresponds to the origin of coordinates. ‘Ihe two-sheeted domain in the 
b-plane is the simultaneous domain of definition of the functions 8, 
and 8,. In the xycyt-space it determines the interior of a characteristic 
cone of the system (1.3), with vertex at the point x = y = t = 0. 

2. Lamb’ s problem. Suppose first that on the boundary of an aniso- 
tropic half-space y 6 0 there act the distributed tractions: 

c+, = - N (z, t), zJcy = - T (z, t) for y=O (2.1) 

which differ from zero on the rectangle 0 < t < t,,, - 1, < x < Z,, and 
suppose that they have a finite impulse; and introduce the new tractions 

NE@, t,=fN($, f), T, (z, t) = GT($, +) (2.2) 

which differ from zero on the internal 0 < t < E to, -: c 1 1 < x < E 1 1, and 
let q$ (x, y, t), &(x, y, t) be the corresponding potentials. It is easy 
to show that in the limit, as 6 + 0, we obtain homogeneous functions of 
the first order, + and I$, which correspond to the action of an instan- 
taneous impulse. Thus in order to solve the problem it is necessary to 
obtain solutions of the system (1.3), with zero stress components (T and 
r ky on the boundary of the domain for t > 0, that is 

Y 

‘Ihe solution will be sought in the form (1.14). Ihe boundary condi- 
tions will then be automatically satisfied, provided that the analytic 
functions and Q, jl 'jt analytic in the upper half-plane, fulfill the re- 
lations 

2 Re T[(c - d) O2 + aAj21 CDj’ + (0 + d - C) OAjYj'} = 0 
j=t 

2 Re {- 28hj@j’ + (hj2 - e2) Yj’> = 0 

(2.4) 

Using (1.12)) we obtain 

Re k.Slol + 3L2S2021 = 0, Re 0 fMlwl $M2~2 I = 0 (2.5) 
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from which it follows that 

where 
Sj = I(61 - 1) 0' i- 7lVl I'j + (1 -I- Tl - 61) Qj 

Mi = - 2hj2Pj _I-@;~ - 0") Qj 

(] 
1,2) (2.7) 

Using the CIJ~, as determined by (2.61, in Equation (1.12), we obtain 

Since the imnediate determination of the constants a and p is not an 

easy matter, we shall follow an indirect approach. We shall construct 

the solution of the same problem by means of a successive application of 
the Fourier and laplace transformations, as is done in [ 3 I , and later 
compare this solution with (2.8); in this way we arrive at the result 

cp = -s rRloo (y, t, k) + dk + $rR,‘- (y, t, k)‘~dk 
1 . 

Here d, = p d, where p is the density of the medium, and N,, T, are 
the normal and tangentia .l components of the impulse 

(2.10) 

6 = 8 (5) = (St - Ajooyo) k 

Mj, 
The functions tj”“, Mjoo, Sjoo, PP’, Qjoo are obtained from the hi’ 

Sj, P ., Qj which were introduced’earlier, by replacing 8 by i/c. 
order to 6 

In 
etennine a and p, one must compute, for example, d+/ d x. From 

the solutions (2.9) we obtain 
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00 2 . 

i- L 
1 

\P 

hion h,:; Pjo= Sjoo’ eeoo dcdk 

(Ajo - hJ (ix Ajooy -t 51) A”O (5) 
(2.11) 

" jzj=l 

0'" = ooo (5) = (ix-_Pt--hj""y)k 

Interchanging the order of integrations, choosing the contour I, in 
such a manner that it encloses only the singularities corresponding to 
the roots of the equation ix -.X.OOy +.rt =-0; employing Jordan's lemma 
and the theorem of residues of d uchy, we obtain, in terms of the vari- 

able 8: 

2 

acp 

81 
- s Re 

hjP,_jM,_j i 
---_Re 

hjh,_jPjSs_j i 

az= j=1 (hj -h,-_j) 6j’ A (Oj) 
- (2.12) 

(hi -.h,_j) hi’ A (Bi) 1 

dj’ = - 5 + hj' (e*) ?J 

Upon comparison of this equation with the one resulting from the 
fundamental equation (2.8), it follows that 

(2.13) 

which completes the solution of the problem posed at the outset. 'Ihe de- 
terminant A(8) is given by 

A (e) = - ce (e2 + w) (ez + h8) vm R (e) 

R (e) = { [a2 - (C - d)21 82 - aj pQ-1 - e2 - a I/C1 - 82 
(2.14) 

Rayleigh's function R(8) for the anisotropic media was studied in 
11 1‘ It has two real syavnetric roots, which correspond to the speed of 
propagation of Rayleigh waves on the surface of the given medium. 'Ihe 
qualitative picture of the motion in an anisotropic medium is analogous 
to the motion in an isotropic medium. A disturbance which originates at 
the origin of coordinates at the time t = 0 is propagated throughout the 
entire half-space, dying out gradually at all interior points. With the 
passage of time almost all the energy of the disturbance is concentrated 
in the neighborhood of the surface of the medium and behaves, at siffi- 
ciently large distances from the center of the disturbance, as a Rayleigh 
surface wave. For c < a -:d we obtain from (2.8) the known solution of 
Lamb's problem for an isotropic medium. 

3. Lb's problem with mixed boundary conditions. The bound- 
ary conditions will be taken as in [4 It 
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$/ = 0 for y = 0, - cc < 5 < 00 

%I =0 for z>O, v=O for 2<0 
(3.1) 

‘Ihe condition r ry = 0 at boundary points yields 

Putting 
8 (A&o1 +Mzoz) = ip (3.2) 

~L~S~U + h2Sao2 = A (0), Re A (0) = 0 (e > 0) (3.3) 

there occurs the sought function A(8), which will be supposed to be 
bounded at infinity. ‘lhe third boundary condition gives 

5 (hj2Pi + eyq ai = B(e), 
j=l 

Re B (0) = 0 

while (3.1) and (3.3) together give 

h 
tij (e) = - 

2-j s&-j iP - W-f,_j A (0) 
(hj - &+j) A (Oj) 

Substituting into (3.4), we then obtain 

where 
T~OA (e) - T2y3 = L3 (e) 

(8 a (3.4) 

(3.5) 

(3.6) 

y(e) = 2 ‘3 3 
* 3 .p.+ e2Qj eLw3_j ’ 

a(e), T2T PI= 22 
J*j2Pj + O”Qj h2-j 82-j 

j= l  hj-'h,_j j=l bj -.$-j A (eb (3.7) 

In the sequel it will be convenient to replace the constants a, d, c, 
respectively, by a -2, d2, c-“. ‘lhus, the sought function A(8), which is 
to be analytic in the upper half-plane, will satisfy on the real axis 
the conditions 

Re A (0) = 0. (0 >---a), Re [TIoA (0) - T2”ipl = 0 (9 < -a) (3.8) 

Since the functions P ., Qj, Sit M are real for real values of the 
variable 8, in view of t e value of the determinant A(0) and of the h 
choice of the branches Xi and of the roots d(a2 -:e2) and d<d2 -:02) 
(they are supposed to be positive on the upper banks of the cuts (-:a,a), 
(--d, d)), we have that the function T, must be real and the function T, 
must be purely imaginary when 8 < -: d. Consequently for 8 < -: d we must 
have that: Im A(8) = 0, that is to say, the function A(8) may be con- 
tinued analytically across this scent of the axis. Denoting by f its 
real part on the segment ( -d, -:a), we get 
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(3.9) 

By the radical $d +,O) is to be understood here that branch which is 
positive on the upper bank of the cut 8 > -: d. For the function x(e), on 
the same upper bank, we obtain 

Qo zz i (-l)"-j(hj"Pj + 02Qj) MS__j 
(3.10) 

i=l 

Observing the value of A(8), and the fact that i+ =--:x-‘, where x-’ 
is the value attained by ~(0) when approaching the same segment of the 
real axis from below, we deduce that 

Thus we are led to a well-known boundary-value problem, whose solu- 
tion, satisfying all the stated conditions, can be put in the form 

xo(e’ = l/d+iJ/a+eexP& 

-_a In Gldk 

s &__e 
--d 

In view of (2.8) we have 

ah’ +ah’=i (BjM,_jA (O)- ‘3_jS3_jiP) hjPj 

j=l (hj - $_j) A (!I$ 

ylt + y21 = i (ejJf3-j A (0) - ~3_j~3_jW fIjQj 

j=l (hi - ha_j) A (8j) 

‘lhe constant & may be obtained from the condition that the solution 

(3.13) 

must be bounded for 0 = -: co, where co-’ is the speed of the Rayleigh 
waves. In view of (3.13) this means that 

for e=-co (3.14) 
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which in turn implies that, since A( -o,) = 0, that the numerator of the 
expression for Y1 ’ +.Y2’- is also zero, thus enabling us to evaluate the 
constant j3i by means of the constant ,@, and to write that 

A (e) = ipAo (e) (3.15) 

Substituting this into (3.13), we obtain 

(3.16) 

Since for large 0 the term containing A,(e) in (3.171 tends to zero, 
and Expression (3.17) tends to the solution which corresponds to the 
action of a purely tangential component of the impulse, we must have that 
@ =.-: 7” /ndl; and thus the problem has been entirely solved. It may be 
readily verified that when cs2 = a2 -. d-‘, we are led back to the re- 
sults obtained in the isotropic case in [ 4 1 i 

4. Reflection of plane waves from rectilinear boundaries. 
lbe consideration of the reflection of a plane wave from a rectilinear 
boundary leads to a homogeneous Hilbert problem. ‘Ibe evolution of the 
wave is given in the form 

Cpl' (QI') +Cp2" (Q2') = fJ hj*Pj*@j (Qj") 

j=l 

Qj" = t - 802 - hj (0o)y 

-+x0 (s-ho) + *2* (522") = $ 8oQj"oj(f2jo) 

j=l 

(4.1) 

where the w. are branches of functions which are single-valued on the 
above-menti&ed Kernann surface. ‘Ibe boundary conditions are mixed (see 
Fig. 1; notice that in Figs. 1 and 3 the points tk” are the image points, 
in the plane xy at the instant t, of the branch points ok”). The re- 

flected waves, corresponding to various boundary conditions, may be 
easily constructed for x > 0 and x < 0. ‘Jbe solution is obtained in the 
form 

cpl f- qz =i: (~j"~~_~j+~a~_~o), *1 + 452 = i (1/7j0+gC_j+~j-3**) (4.2) 

j=l j=l 

where 

t$2j = - hj*PjoOj ($2,“) +hj”PjoCj61j (St-j”) + h3_j”P~_joD~_j~j (SZj-30) 
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qj = 00 Qj”oj (G?j“) + 00 Qj°C+j (Q-j”) + 80 Q+-jD3-j0j (Qj-30) (4.3) 

aja = kj (eo), hj’ = Pj (e,), Qj” = Qj (Qo), SY'-~=t-6o~~-+h"~, . . . 

and the values of the constants Cj and Dj depend on the boundary condi- 
tions. ‘lbus for stress-free boundaries we have 

A” = A (00) (4.4) 

and for the boundary conditions applicable for x < 0 we have 

Cl’ = D1’ = - 1, Cz’ = P)z’ = 0 (4.5) 

In the sequel we shall take for tij a step function ~a(.$?, which equals 
zero for 5 > 0 and equals unity for 5 < 0. For this function the cor- 
responding irrotational disturbance, in the domain CFD, corresponding 

Fig. 1: 

-d -a l$ a d 

Fik 2. 

t 

1 tz 

to the root X,, is just 4 O + yr?_lo + #_ioo; while in the domain CED 
the disturbance corresponding to the root A, equals 4 O + sb,,O + +_2oo. 
Similarly, the irrotational disturbances in the domains GFF’ and GHEE’ 
have intensities +1 + #_1o’ + #_l’oo and +*O + +_,“’ + +_2roo, respect- 
ively. In these domains one may also readily determine the intensity of 
the corresponding equivoluminal disturbances ‘4.’ + I 9 + V O” and 
y.+.yr ?‘+Y YOO ‘Ihe functions a.(0 $1 and ‘Y .(0 .!I whichJdescribe 
the di;tkrbance’in the domain 0GFCio ‘are defiiedJin the upper half- 
planes of the Riemann surface. Since the arcs CFG and BEA are the 
envelopes of the straight lines t - ejx + hjY = 0 for real values of 8. 
andX. J, the points E and F in the xy-plane must correspond to a singlel 
point @,, lying on the segment (- cz, a) (see Fig. 2). At this point the 
single-valued and piecewise constant (on the lnentioned interval) func- 

tions @l(O1) + @2(02) and Yl(8,) + Y2 (0,) possess a finite discontin- 
uity. Representing these functions by means of integrals of Gukhy type 
and differentiating, we easily obtain in the neig~rh~d of 8, 
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2 h.“P”M 
(4.6) 

a0 = - 2 h10s10~h2”Sz” x ;,& “yt 
j=l 3 3--J 

‘lhe fact that the shear stress is zero on the boundary of the half- 
plane gives 

Re (~~1~1 + Mw2) = 0 (4.7) 

‘Ihe fact that there is zero normal stress for x > 0 gives 

Re (&SNI + bS2w2) = 0 (0>0) 

‘Ihe absence of vertical displacement for x < 0 gives 

‘Re (Trol + Taoz) = 0, Tj = hj2Pi + Q2Qj (0 <O) 

(4.8) 

(4.9) 

Since there is no source of vibrations at the origin, it follows that 

Ili:lNQ -j- Mzwz = 0 

and putting XiS,6+ +:h$,o, = A(@), we have 

Expressing “j by means of A(8) and substituting in (4.131, we obtain 

Re A (0) = 0, fl > 0 

(4.10) 

It is readily seen that the imaginary part of A~~} is zero for @<-:d; 
hence according to (3.9) we obtain A = d(d -t-.BAl), where 

Re Tdfz - T&I &(fl) _ o 

b--b A(0) - 
(--de<----) (4.111, 

‘Ihe function A,(8) has a first-order pole at the point 8 = 8,, while 
the resulting solution, as before, must be bounded for 8 =---co. Intro- 
ducing the new function A, = (13 -.8,)A,/(B -:c,,), we obtain on the upper 
bank of the segment ( -:d, --:a) 

Re TIM&- T&l -42 (e) 
k--h l/$-gpl? (0) = 

0 (---<<<--a) (4.12) 

where Azf‘is the limiting value of the function A, on the segment (-:d, 
-:a) when this segment is approached from above. Denoting by A*-’ its 
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boundary value when this segment is approached from below, one sees 
readily that p = A,-, ‘Ihis allows us to reduce the problem to the solu- 
tion of the following homogeneous Hilbert problem: 

A2+ = GAz- 
?a--1 R(0) 

* 
G=-----_ 

h+ hz R (6) 
(4.13) 

whose general solution has the form 

AZ (6) = ip x0 (8) -a InG 
- 

Il/a+eVd' 
XO (8) = exp i ddc, Gr = - G (4.14) 

--d 

with /3 a real constant. The radical is understood to denote the branches 
which are positive on the upper banks of the cuts 8 > - a and 8 ,> - d. 
Analogously for A,(8) we obtain 

A1 (0) = ifI ~l/-.$~m (4.15) 
0 a 

The constants may be evaluated from a consideration of the singular- 
ities of the functions O,,‘(O) + $‘(O) and YI’(0) + Ur,‘(O) at 8 = B,,. 
According to (4.6), letting 8 tend to 8,, we obtain 

P= 
2 (hl”S1” + h2”Sz0) 

n (0”fCO) 
(4.16) 

-2 and the problem is entirely solved. Setting c = ae2 - de2, we are led 
to the solution of the same problem for an isotropic body: 

F (0) ~ - 
Gr=-_ 

F(e,’ 
F (6) = (d2 - 2P)2 + 4e2 ‘C/a2 - 82 ‘l/d2 - 8” 

cD2' (6) = Yr' (8) = 0 (4.17) 

,@I’ (6) = (a-$ - d-2) “,,“’ A (Q), YE’ (y) = (a-” - d-2) “z A(0) 

5. Diffraction by a rigid slit. For an isotropic body this 
problem has already been studied in 15 1 and [ 6 1 . ‘Ibe solutions of Equa- 
tions (1. l), of the form (1.4), will be constructed for the displace- 
ments. According to C 1 3 , we obtain 

v (2, y, t) = Re [VI (Ql) + ~a (e2)l = i Re XLj (E) ~j (6) d-4 
$=I 

(5.1) 

where 
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Lj (5) = U-2~2’ + d3Lj2 (5) - 1, K (<) = c-y (5.2) 

and the variables oj are defined by the relations (1.15). ‘Ihe elastic 
medium occupies the plane with a cut along y = 0, x > 0. For t < 0, in 
the left half-plane x < 0, we have a plane wave 

which impinges at 
pattern for I?,> 0 

The reflection 

y, t) = Ll (00) W1° (521”) +Lz (eo) w2O ( QzG) 

Qj” = t - BOX - hj”?J (0 < 60 <p) 

the time t = 0 on the edge of the slit. The diffraction 
is depicted in Fig. 3. 

of the plane waves in the neighborhood of the lower 

boundary of the slit may be obtained by a calculation of the boundary 
conditions corresponding to a wave packet of plane waves of the form 

no0 (2, y, t) = e A?[- A.” 3 Oj” ( f2j0) + ~j”~j~jo (Qj”‘) + ~2~j~jW’ (S3,.Tj)] 

j=i 

uoo (2, y, t) = i [Lj” Wj” (Qj”) +tj”NjWj (Qj”‘) +Lj’EjOj’ (Q2Zj)J 

j=l 

Qi”’ Et _ 80X + Ajoy, q= K (flo), Lj” = Lj” (00) (5.4) 

In order to fulfill the conditions for y = 0 we must have 

Nj = 

hj”L30_j + h3_jLj” 2hj0L j” 

+i - h,_jLj ’ 
.Ej=~ 

hj”L3_j - h,ljLj 
(5.5) 

Let us formulate our boundary-value problem for the functions 
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u (fl) = Ul (e) + u2 (e), v (e) = v1 (e) + v2 (e) (0 = f) (5.6) 

i.e. let us find the values of these functions on the real axis, where 
the variables e1 -and 8,, defined by the relations (1.15), coincide. The 
functions uj and vj represent the disturbance in the domain AF,GFB of 
the planes ej of the Riemann surface, where cuts have to be made, re- 
spectively, along the segments of the real axis 8, > - a and 8, > - d 

a step function which equals (see Fig. 4). Since the function w ? (t) is 
zero for 5 < 0 and equals unity foi! C$ > 0, 
Re u(0) and Re v(6) are piecewise constant 
and that 

it follows that the functions 
on the boundaries of the cut, 

Re u (0) = Re v (8) = 0 

Re u (0) = CX’, Re v (0) = p” 

(e > eo) 

(--a0 <Qo) 

(5.7) 

where 8, on the upper bank of the cut corresponds to the points E and F, 

and on the lower bank corresponds to the points E, and F, (see Fig. 3): 

a0 = U1° + m” = k” (AI’ + h27, p" = VI0 + vz" = Ll” +L2O (5.8) 

Performing a cut in the plane 6, along the segment (-d, - a), and 
denoting by fl and f2 respectively the real values of u(0) and v(f3) along 
this segment, we obtain readily, as in [ 5 1 

Let us put 

4 (e) = $-I/d + e. + (e - e,) moo (e), 
-d 

According to (5.1) we have 

K (e) hh + h2021 = (e _ f,(Fds , LlOl + Lzoa = 
0 (e _ ;)ydq F1l) 
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which implies 

@I @I = 
&A (0) - KhzB (8) 

(0 - 00) l/d+ AlK 
(5.12) 

KAl (0) = ?aL2 - h2L1 = “va;; 02(~z- AI) [da1/;12 - e2 + a2’yici2 - 021 

Since the function o1 may be continued analytically across the seg- 
ment t--d, -62, i.e. its limiting values from above and below this seg- 
ment must coincide: ol+ = ol-, we are led ,to the equation 

(5.13) 

‘Ihe right-hand side of this equation iceal., whathe left-hand 
side is purely imaginary, because A-= - A+, B- = -I3 $ h 1 = - AT, and 

% and K are real on the segment in question; consequently, this equa- 
tion is equivalent to the following two equations: 

The solution of these equations, which is 
the neighborhood of the boundary points, has 

A (0) zz ia”” I/d ,, yo CO), B (0) = i~002T0 (e), 

bounded at infinity and in 
the form 

(5.15) 

The function y(5), and together with it the functions u,‘(5) and 

U,‘W, is holomorphic in the neighborhood of the point B = - $, and 
satisfies 

where N and y are real constants, with y < 1. Otnsequently, the point 
8 = - d is a removable singularity for this function. The constants cP 
and PO0 may be obtained by comparing (5.10) and (5.152 for 0 = B,,; the 
result is 

If, instead, we choose the functions W’“(@) and YO”(e) as unknown 
functions, we obtain nonhomogeneous equations of the type studied in 
[ 5 1 . However, in this case the structure of the solution is much more 
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complicated than in (5.13) above, where the whole matter reduces to the 

calculation of a single function Y,,(O), which may be given in the form 

of tables [6 1 . 
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